
What's the point? 
 
Pure unlimited aerobatic aircraft have seldom been 
modeled in any mainstream simulator. Many will 
argue that the Extra 300 introduced in Microsoft®   
Flight simulator-98 is a clear proof of the contrary, 
yet the FS flight model was (and still is) too limited 
to provide a decent sensation of flying. The most 
recent aerobatics planes correctly modeled are the 
SF260 and Spitfire MkXIV from Real Air®  but 
those are not  dedicated “stunt 
airplanes”. 
 
The last serious attempt to 
model this category of  aircraft 
was the first Flight Unlimited 
simulator back in 1996! It was 
nicely packaged with a fine 
tutorial (remember, this was at 
a time when games came with 
a manual) and allowed one to 
fly machines ranging from an 
aerobatic sailplane to the Su-
31 unlimited aerobatic aircraft. 
 
Many reasons can be found for 
the lack of interest in this cate-
gory. The most obvious is that 
aerobatic aircraft are limited to 
Visual Flight Rules since in-
struments are heavy and sensi-
tive to the kind of flying in-
volved. What's worse, they have a very short range 
because a routine of 10 minutes of high-g maneu-
vers will bring the pilot to his (or her) knees, and 
the less fuel, the better for maneuverability. Finally, 
performing a correct maneuver requires a lot of 
training (first loops look awful when replayed!). 
 
All this being said, it is an extremely rewarding 
way to fly as it gives a sense of the third dimension 
with fine management of potential vs. kinetic en-
ergy being the key. 
  
Flight modeling is the most important part when 
recreating the feeling of aerobatic flight. Most of 
the maneuvers are performed inside or near a stall. 
Asymmetric stalls are also a key ingredient of ma-
neuvers such as the snap roll. JSBSim already pro-
vides a fine experience of flying and, being open 
source, has the potential to evolve to give the whole 
envelope. 
 
Why did I choose the Su-26? Let us say that it is a 
matter of personal taste. Sure enough, there are bet-
ter aircraft around (Cap-232 or the superlative Su-
31 come to my mind), but one can hardly fight his 

aesthetic judgment! 
 
Modeling the Beast 
 
Aerobatic aircraft have plenty of features that make 
them easy to model (which is good since this is my 
first add-on aircraft for FlightGear): 
 
• Straight wing with little taper ratio (this allows 

using the lifting line theory for 3D wing deri-
vations (Prandtl) 

• Symmetric Airfoils 
• Low Mach number (incompressible flow) 
• Reciprocating engines 
• No high lift devices (lift is obtained through 

thick airfoils) 
• Simple avionics 
 
Nevertheless as I wrote before, the post-stall enve-
lope must be modeled for the magic to begin and 
this is were it gets tough. 
 
I did not have explicit references for the SU-26 air-
foil. The only data I could get was a relative thick-
ness (see The Incomplete Guide to Airfoil Usage, 
http://www.ae.uiuc.edu/m-selig/ads/aircraft.html). 
So, I started with a typical symmetric airfoil and 
scaled it to match a relative thickness of 15%.  
While this may look like an appalling approxima-
tion, thin airfoil theory indicate that the thickness 
law (which is the only variable for a symmetrical 

(Continued on page 2) 

Building an Aerobatics Aircraft for JSBSim : The Su-26 
Enrique Laso Leon 

Inside this issue: 

Aerobatics Aircraft: Su-26 1 

Scripting Multiple Runs in 
JSBSim 

3 

Scripting Changes in 
JSBSim 

6 

JSBSim and MSFS 9 

News 10 

Modeling Aerodynamic 
Moments 

11 

OpenEaagles Simulation 
Framework 

12 

The 2006 AIAA Modeling 
and Simulation Conference 

14 

Simulators Aboard the 
U.S.S. Lexington Museum 
at Corpus Christi, Texas 

16 

Simulate This! End 

The quarterly newsletter for 
JSBSim, an open source flight 

dynamics model in C++ 

 SUMMER 2006 
VOLUME 3, ISSUE 2  

See Page 12: 

http://www.ae.uiuc.edu/m-selig/ads/aircraft.html


(Continued from page 1) 
airfoil) only influences pressure repartition, not 
Clift vs. alpha slope (2*π for incompressible 
flow). This in turn will change the stall character-
istics (abruptness, critical angle, etc.), but I 
thought the difference would be too small for 
anybody to notice, provided the airfoil had a 
rounded leading edge: 

The software used to compute the stall character-
istics was xfoil (http://web.mit.edu/drela/Public/
web/xfoil) which gave polar curves up to 30 de-
grees of angle of attack. 

Post stall behavior derivations was found from an 
article written for the blades of wind turbines 
(Stall coefficient, aerodynamic airfoil coeffi-
cients at large angle of attack, C. Lindenburg réf. 
ECN-RX-001-04 Energy research center of the 
Netherlands). 

These computations were made using Open Of-
fice Calc v2.0 (any spreadsheet would do for that 
matter). It should be noted that the curve from 0 
to 30 degrees (xfoil) matches quite well with the 
curve for AOA higher than 30 degrees (post 
stall). 
 
Derivations for the finite span wing was obtained 
using the Prandtl theory of the (vortex) lifting 
line (the one that gives the induced drag as a 

function of the aspect ratio). For post-stall behav-
ior the article mentioned above provides a correc-
tion for finite span. The combination of both pro-
vides the following coefficient curves : 

It is interesting to notice that the 
values given by Aeromatic (blue 
curve on the lift diagram, see www.
jsbsim.org for Aeromatic) are not 
that far from the complete deriva-
tion. They would even be better if 
the airfoil camber effects could be 
taken into account (at zero camber, 
i.e. symmetrical airfoil lift at zero 
incidence is zero). 
 

Drag at zero incidence was increased by impos-
ing a minimum value in order to model fuselage 
drag (very very crude). 
 
The result of all this is an aircraft accomplishing 
simple aerobatics neatly (barrel rolls, loops, Cu-

ban eights) and even complex ones 
such as the spin with a nice feel. The 
latter came as a surprise since 
JSBSim comes without asymmetric 
stall effects so far. Snap rolls, while 
being possible, are somewhat slow 
and induce a large loss of altitude. 
Stall on the other hand is extremely 
brisk with g-loading dropping sud-
denly as elevator authority is huge 
(purposely in order to get adequate 

control all through the envelope) 
 
Future Improvements 
 
The beta version of the Su-26 will be released 
sometime soon in order to get a first feedback 
(hopefully from real life pilots, too!).  
 
The model can stand a lot of improvement with 

(Continued on page 3) 

Page 2 

Edited by Jon Berndt 
 
“Back of the Envelope” is a 
communication tool written 
generally for a wider audience than 
core JSBSim developers, including 
instructors, students, and other 
users.  The articles featured will 
likely tend to address questions and 
comments raised in the mailing 
lists and via email.  If you would 
like to suggest (or even author) an 
article for a future issue, please 
email the editor at: 
 
Jon@jsbsim.org 

About this 
newsletter ... 

http://web.mit.edu/drela/Public/web/xfoil
http://web.mit.edu/drela/Public/web/xfoil
http://www.jsbsim.org
http://www.jsbsim.org
mailto:Jon@jsbsim.org


(Continued from page 2) 
the current definition of JSBSim.  The next step is 
to correctly model the moment coefficient of the 
whole aircraft (that is, taking the wing and tail 
separately) for the whole AOA range. This does 
not require a lot of additional theory, just to take 
into account the direction of motion (the “focus” is 
at a quarter of the chord for low incidence, but 
measured in the direction of the flow !). 
 
Fine tuning of the propeller is really lacking for 
now. Particularly thrust in the low speed envelope 
is abundant, making landings quite difficult. 
Other improvements could come from evolutions 

Page 3 of JSBSim, itself. In order to model post stall be-
havior, asymmetric effects could be taken into ac-
count, especially since propeller airplanes will tend 
to depart in asymmetric stall due to engine torque 
and P-factor. 
 
Furthermore variations of lift along span would 
add an extra feeling, since loss of aileron effi-
ciency at low speed is related to wingtips being 
more loaded than roots for tapered or swept wings.   
But in turn that would have little influence on 
aerobatics airplanes as they often have full span 
ailerons to handle this problem! ▲ 

Scripting Multiple Runs in JSBSim 
Agostino De Marco 

A couple of months ago I began to think over the 
following idea: One may have the need to run 
JSBSim multiple times and compare the results;  
would it be worthwhile to implement a new capa-
bility into the scripting language supported by 
JSBSim's FGScript class that would make it possi-
ble to launch one or more successive simulations 
with one single script? 
 
After all, in each of the many scripting languages 
available today we always find the following ele-
ments: conditions (if-then-else clauses), selection 
(switch clauses), iterations (for clauses), inclusion 
of blocks of code (include/import clause) etc. 
Then, what if we had something vaguely similar in 
JSBSim scripts? 
 
As someone said in the development-issues mail-
ing list, there are many reasons for wanting multi-
ple runs from a simulation. When designing or 
modifying a control or guidance system, one may 
want to evaluate the design at multiple test points 
within the flight envelope. Having the ability to set 
up a file with a number of initial conditions, trims, 
etc. would allow the user to do multiple tests with-
out having to play around with a bunch of files.  
 
Thinking at the simplest level, suppose that one 
has prepared N scripts, for example, 
737_runway_1.xml, 737_runway_2.xml, ... , 
737_runway_N.xml, that clearly let us guess that 
the user is trying to simulate different variations of 
a take off run for the B737 aircraft. According to 
the above idea, he would like to have the chance to 
run JSBSim through each of the above cases by 
using a single script, the "driver", which could be 
something like: 
 

 A first problem arises here. After each run this 
approach should incorporate a "post-run"  
step to save the output (if specified), e.g. 
B737_datalog.csv, in a number of unique files, i.e.  
B737_datalog_1.csv, B737_datalog_2.csv, ... , 
B737_datalog_N.csv. 
 
From the coders point of view the development of 
advanced scripting features would of course 
become quite demanding, as this job would be like 
implementing a sort of interpreter on top of 
the main JSBSim structure. 
 
Actually, looking more closely at the kind of code 
that JSBSim is and how it is intended by the  
developers, even if the above "capability" would 
be nice to have, one can comment that (quoting 
Jon Berndt) this is the kind of thing that, in spite of 
being explicitly provided for in the scripting lan-
guage, should be done externally, through a feature 
in JSBSimCommander or via a shell script. In fact, 
an application like JSBSim Commander, being that 
just a "Commander," will hopefully have that abil-
ity sooner or later. 
 
Finally I convinced myself that the capability to 
launch multiple runs of JSBSim, collect output  
data appropriately, and prepare plots for the analy-
sis should not be required to the flight dynamic 
model, because this is not his job, but should rather 
be implemented outside via a shell script. And 
that's what I did. Eventually, I will also to have an 
animation (i.e. an .avi file) of the simulation, auto-
matically generated. 
 
Multiple runs done in this way are really helping 
me in the analysis of a number of variants of stan-
dard flight maneuvers starting from steady equili-

brated conditions, in flight and 
on ground. 
 
Thanks to a grant from 
ENAV, the Italian authority 
on flight safety, I have ana-
lyzed a number of take off 
runs from Milano Linate air-

(Continued on page 4) 

<runscript name="B737 takeoff runs" action="MULTIPLE"> 
  <script file="737_runway_1.xml"> 
  <script file="737_runway_2.xml"> 
  ... 
  <script file="737_runway_N.xml"> 
 
  <!-- this is just a naive attempt 
       to define something... --> 
</runscript> 



Page 4  
(Continued from page 3) 
port. I have investigated on the possible failures 
during take-off runs and consequent inadequate 

pilot reactions/maneuvers that end up 
with the airplane colliding with a par-
ticular radar tower, which is going to be 
build in the vicinity of the main run-
way. 
 
For the sake of brevity, I will discuss 
below, with an annotated example, how 
I have tackled the most relevant prob-
lem from JSBSim users' perspective: 
running JSBSim a number of times in a 
row through a shell script. 
 
I will reserve some final observations 
as hints for the development of similar 
scripts that, from logged output files, 
generate relevant plots and automati-
cally produce a document collecting 
them. This involves the use of well 

known, freely available, programs like Gnuplot 
and LaTeX. 
 
Before going on further we have to note that the 
0.9.11 version of JSBSim "suspends" the simu-
lation, i.e. the time increment is set to zero 
when a crash is detected. Consequently, when 
JSBSim is launched as a stand-alone batched 
application and the simulation ends up with the 
aircraft crashing on the ground the program 
enters into an infinite idle loop and the user 
must manually kill the corresponding process. 
 
The need to work with failure situations during 
take-off and with scripted runs has required 
me to modify a little bit JSBSim's main loop in 
order to have the program execution  

terminated each time, with no possibility of suspen-
sion. 
 
The code snippet In Code Sample 2 illustrates the  
modifications I made in JSBSim.cpp. 
 
Multiple runs of JSBSim are now easier to achieve 
with a bash (Bourne-Again SHell) shell script. 
Bash is a command language interpreter that exe-
cutes commands read from the standard input  
or from a file. Bash also incorporates useful features 
from the Korn and C shells (ksh and csh), popular 
interpreters from the Unix world. Bash is freely 
available for all Linux distributions, for Unix and for 
Windows (Cygwin). 
 
The basic idea behind multiple runs via a bash script 
(that I'll call "multiple-run.sh") is to concentrate in a 
given directory a number of JSBSim scripts, e.g. 
"B737_script1.xml", "B737_script2.xml", 
"B737_script3.xml", etc., and have a tool that per-
forms the following tasks: 
 
1. list the eligible xml files, 
2. put them into an array, 
3. generate a unique ID for each of them, and 
4. launch JSBSim as many times as the number of 

cases listed. 
 
The unique ID will help to rename and manipulate 
the output files further. A possible "multiple-run.sh" 
is listed in Script 1 (see page 5), with appropriate 
annotations. 
 
It is a good idea to put the script where JSBSim.exe 
resides and give it the usual attributes (execute per-
mission) like the following command does: 
 
chmod u+rx ./multiple-run.sh 

 
The multiple runs will be 
launched with the com-
mand, 
 
./multiple-run.sh 
 
[The command must be run 
in the directory where the 
shell script resides.] 
 
Once all JSBSim runs are 
done (according to the con-
tents of the directory 
<JSBSim root>/test/
scripts) the user will find a 
bunch of output csv files 
in the JSBSim root dir. 
Their names start with a 
unique numeric code as 
produced in the script main 
loop. 
 
At this point, it is a 
straightforward task to pre-
pare a script that lists all 

(Continued on page 6) 

Code Sample 2 

// *** CYCLIC EXECUTION LOOP, AND MESSAGE READING *** // 
 
while (result) { 
  while (FDMExec->ReadMessage()) { 
    msg = FDMExec->ProcessMessage(); 
 
    switch (msg->type) { 
      case JSBSim::FGJSBBase::Message::eText: 
      { 
        cout << msg->messageId << ": " << msg->text << endl; 
 
// I just warn the user the simulation will be stopped anyway 
#if defined(AGO_NO_SUSPEND) // agodemar 
      string::size_type loc = msg->text.find( "Crash Detected: Simulation STOP", 0 ); 
      if ( loc != string::npos ) 
        cout << ".............. simulation will be stopped !!!" << endl; 
#endif 
        break; 
      } 
    } 
// ... 
      if ( ! FDMExec->Holding()) { 
        if ( ! realtime ) { // IF THIS IS NOT REALTIME MODE, IT IS BATCH 
          result = FDMExec->Run(); 
 
// Here I break and stop the loop avoiding program suspension 
#if defined(AGO_NO_SUSPEND) 
          if ( FDMExec->GetState()->Getdt()==0.0 ) // check if SUSPENDED after CRASH 
            break; 
#endif 



Page 5 #!/bin/bash 
 
# The sha-bang (#!) at the head of the script tells the system  
# that the file is a set of commands to be fed to the indicated command interpreter, 
# in this case /bin/bash. Thus #! is actually a two-byte magic number  
# that designates here an executable shell script 
 
echo "-------------------------------------------------" 
echo " Multiple JSBSim runs " 
echo "-------------------------------------------------" 
echo 
 
# JSBSim root dir, executable name, and working directory 
# (change them conveniently for your system) 
 
JSBSim_ROOT="l:/agodemar/jsbsim/JSBSim-0.9.11_dotNET2005/JSBSim/" 
 
JSBSim_EXEC=$JSBSim_ROOT"JSBSim.exe" 
 
WORK_DIR="test/scripts/" 
# Note: must be a relative path to JSBSim root dir !! 
# we will put here the scripts "B737_script1.xml", "B737_script2.xml", ... etc. 
 
#------------------------------------------------------------------------------------ 
# collect script file names (from WORK_DIR) 
#------------------------------------------------------------------------------------ 
 
SCRIPT_FILES0=`ls "$JSBSim_ROOT$WORK_DIR"B737_script*.xml` 
 
# The back ticks `...` return the result of the system command, ls, into a string. 
# File names returned here do not include the path. 
 
#------------------------------------------------------------------------------------ 
# give the scripts a proper name, including the path 
#------------------------------------------------------------------------------------ 
 
SCRIPT_FILES= 
for file in $SCRIPT_FILES0 
do 
          file="$WORK_DIR/"$file                # prepend the appropriate path 
          #echo $file 
          SCRIPT_FILES="$SCRIPT_FILES"$file" "  # collect the names 
done 
echo "scripts: "$SCRIPT_FILES 
echo 
 
#------------------------------------------------------------------------------------ 
# run JSBSim multiple times 
# and generate the unique ID for each run 
#------------------------------------------------------------------------------------ 
 
prefix= 
PREFIXES= 
 
for scriptfile in $SCRIPT_FILES 
do 
 
  if [ ! -e "$scriptfile" ]               # Check if file exists. 
  then 
    echo "$scriptfile does not exist."; echo 
    continue                              # On to next scriptfile in the list. 
  fi 
 
  # File exists, print name and size 
 
  ls -l $JSBSim_ROOT$scriptfile | awk '{ print $9 "         file size: " $5 }' 
   
  # This is an example of piping (<command 1>|<command 2>): 
  # $JSBSim_ROOT$scriptfile expands to the name of the current JSBSim script that is to 
  # be used for the simulation. Command ls -l returns a number of fields, whose 9th and 5th 
  # are printed by the awk utility (actually on cygwin gawk, Gnu awk, is invoked) 
 
  # Now generate a unique id by using the date command 
  prefix=$(date +%N)   
 
  # "+%s" option (GNU-specific): seconds since 1970-01-01 00:00:00 UTC 
  # "+%N"                      : nanoseconds (000000000..999999999) 
 
  # The following alternative would strip off leading and trailing zeroes, if present. 
  #    prefix=`date +%N | sed -e 's/000$//' -e 's/^0//'` 
  # by using sed 
   
  # store ID in an array 
 

(Continued on page 7) 



Page 6 responding postscript figure will be produced by 
simply launching Gnuplot with the appropriate 
plotting script on the command line: 
 
gnuplot 00091110230_B737_velocities.plt 
gnuplot 000622010230_B737_velocities.plt 
… 

 
It is worth making this procedure automatic like 
the one that launches JSBSim multiple times. 

The same ideas apply to the generation of a LaTex 
document: scan for *.ps, retrieve the unique 
prefixes, parse a template document, generate a 
unique one, collect all, and finally run through 
the LaTeX compiler to obtain a final postscript or 
pdf document with all the desired plots for 
all the simulated cases. ▲ 

(Continued from page 4) 
these newly created csv file (for example by look-
ing for the XXXX_jsbsimrun.log). Retrieving their 
unique prefix, e.g. like in 
00091110230_B737_velocities.cvs  
000622010230_B737_velocities.cvs etc, may 
prove useful in plotting the results. 
 
Suppose one has prepared the simple Gnuplot 
script: 

One can parse the Gnuplot script with sed, substi-
tute the string "CHANGEME" with the unique IDs 
retrieved from the list of JSBSim output files, 
and produce a unique plotting script, e.g. 
00091110230_B737_velocities.plt  
000622010230_B737_velocities.plt, etc. The cor-

#----------------------------------------------------------- 
#Gnuplot script 
#----------------------------------------------------------- 
# set the terminal and the output file 
set term postscript color enhanced linewidth 2.0 
set out "CHANGEME_B737_velocities.ps" 
set key top left 
# plot from file 
plot \ 
"CHANGEME_B737_velocities.csv" u 1:($13/10) w l t "V_C [kts/10]",\ 
"CHANGEME_B737_position.csv" u 1:($2/100) w l t "h [ft/100]",\ 
"CHANGEME_B737_aerodeflections.csv" u 1:($4*10) w l t "delta_e [deg*10]",\ 
"CHANGEME_B737_attitude.csv" u 1:($3*180.0/pi) w l t "theta [deg]" 
set out # free the output 
#    EOF 
#----------------------------------------------------------- 

Gnuplot script, “template-velocities.plt” 

Scripting Changes in JSBSim 
Jon S. Berndt 

Substantial changes have been made to the script-
ing capability for JSBSim. In doing so, the version 
number has been incremented to 0.9.12. 
 
The scripting changes were needed for some test-
ing and debugging. Some of the items had been 
getting thought about for a year or two. 
 

It should not be too difficult to modify exist-
ing scripts to run using the new format. There are 
new attributes and keywords for some of the ele-
ments (example below). The major changes are: 

 
• The "when" element is changed in name to 

"event" 
• The conditional test[s] that must be fulfilled 

for a set of actions to take place is handled by 
the FGCondition class from the flight con-
trols code. The class now moves to the math/ 
subdirectory as it will have even more use in 
the near future. 

• The "persistent" element is now an attribute 
of the event element. 

• You can specify to "notify" when an event is 
triggered, which results in a message being 
printed out. 

(Continued on page 8) 

<?xml version="1.0"?> 
<runscript name="C172-01A takeoff run"> 
  <!-- This run is for testing the C172 altitude hold autopilot --> 
  <use aircraft="c172x" initialize="reset00"/> 
  <run start="0.0" end="3000" dt="0.0083333"> 
    <event name="engine start"> 
      <notify/> 
      <condition> sim-time-sec >= 0.25 </condition> 
      <set name="fcs/throttle-cmd-norm" value="1.0" action="FG_RAMP" tc="0.5"/> 
      <set name="fcs/mixture-cmd-norm" value="0.87" action="FG_RAMP" tc="0.5"/> 
      <set name="propulsion/magneto_cmd" value="3"/> 
      <set name="propulsion/starter_cmd" value="1"/> 
    </event> 
</runscript> 



Page 7 (Continued from page 5, Scripting Multiple Runs in JSBSim) 
 

  PREFIXES=$PREFIXES" "$prefix 
 
  echo "running JSBSim ..." 
 
  JSBSim_RUN_CMD=$JSBSim_EXEC" --root="$JSBSim_ROOT" --script="$scriptfile 
 
  # ...here only assembles the command line for launching JSBSim 
 
  echo $JSBSim_RUN_CMD 
 
  echo "writing log in file: "$prefix"_jsbsimrun.log" 
 
  $JSBSim_RUN_CMD > $prefix"_jsbsimrun.log" 
 
  # ...here the command line is actually launched and the output redirected into a  
  # unique log file 
  # Note: this log file, actually its name, will be useful in post processing 
  #       task by other scripts 
 
  # Next is a list of output files pre-defined appropriately in the aircraft  
  # config file. 
  # I assume here that the scripts deal with a single aircraft type, i.e. "737.xml". 
  # The output properties are specified in that aircraft config file and are logged 
  # to different files for convenience of analysis 
 
  OUTPUT_FILES="B737_accelerations.csv 
                B737_attitude.csv 
                B737_forcesmoments.csv 
                B737_position.csv 
                B737_velocities.csv 
                B737_aerodeflections.csv 
                B737_commands.csv 
                B737_gear.csv 
                B737_propulsion.csv 
                B737_animation.csv" 
 
  echo "moving output files ..." 
 
  # Now the current JSBSim output files are renamed into unique file names by prepending 
  # the id generated above 
 
  MOVE_CMD= 
 
  for outputfile in $OUTPUT_FILES 
  do 
      MOVE_CMD="mv $JSBSim_ROOT$outputfile"" "$JSBSim_ROOT$prefix"_"$outputfile 
      echo $MOVE_CMD 
      $MOVE_CMD 
  done 
 
  echo 
done 
 
# summary 
echo "-------------------------------------------------" 
echo "Summary of runs" 
echo "-------------------------------------------------" 
 
# count runs 
n=0 
for logprefix in $PREFIXES 
do 
  let "n = $n + 1" 
done 
 
echo "N. of JSBSim runs: "$n 
echo -n "Run log-files: " 
for logprefix in $PREFIXES 
do 
  echo -n $logprefix".log " 
done 
echo 
echo "-------------------------------------------------" 
 
exit 0 



Page 8 (Continued from page 6) 
• Events can be named. 
• A delay can be specified for an event, so that 

it executes a certain number of seconds after 
it is triggered. 

• An event can be a notify-only event. That is, 
you do not have to specify actions for an 
event, it can exist to notify the user of some 
kind of event. 

• The “use” command combines selection of 
the initialization file and the aircraft. 

• Properties can be defined in a script, so that 
events can be repeated, etc. 

 
In order to help convert scripts from the old format 
to the new one, an XSL transformation has been 
created and is available for download at: 
 
http://jsbsim.sourceforge.net/convert_script.xsl 
 
Additionally, an XSL script has been created for 
the script itself, so double-clicking on the script in 
Microsoft Explorer (for instance) or other file 
manager application should bring up the file in a 
browser, formatted to be more easily human read-
able (see accompanying illustration). See: 
 
http://jsbsim.sourceforge.net/JSBSimScript.xsl 
 
An XML Schema has also been written that allows 

a JSBSim script to be validated. The schema is 
located at the JSBSim web site at: 
 
http://jsbsim.sourceforge.net/JSBSimScript.xsd 
 
The conditional tests are now modeled using a 
“standard” JSBSim conditional construct, that is 
also used in the flight control switch component.  
When coupled with the new property declaration 
capability and the notify flag, some interesting 
effects can be achieved. One of those is a repeating 
notification that is printed at time or altitude inter-
vals. For example: 
 
 <run start="0" end="100" dt="0.0083333"> 
  <property> 
   simulation/notify-time-trigger 
  </property> 
… 
  <event name="Time Notify" 
        type="FG_DELTA" persistent="true"> 
   <description>Interval</description> 
   <notify/> 
   <condition> 
    sim-time-sec >= simulation/notify-time-trigger 
   </condition> 
   <set name="simulation/notify-time-trigger" 
     value="100" type="FG_DELTA"/> 
  </event> 
 </run> 

 
The above construct will print out a message every 
100 seconds. ▲ 

http://jsbsim.sourceforge.net/convert_script.xsl
http://jsbsim.sourceforge.net/JSBSimScript.xsl
http://jsbsim.sourceforge.net/JSBSimScript.xsd


Page 9 

FSJSB project was started by Majestic Software 
(www.majesticsoftware.com) with a goal to inte-
grate a better and more predictable JSBSim FDE 
into Microsoft Flight Simulator 2004 to achieve: 
 

• More realistic aircraft handing 
• Utilization of the Microsoft flight simulator 

2004 scenery  and environment engines for 
better debugging and testing the JSBSim 
format aircrafts  

• Adding the flexibility to the aircraft add-ons 
development for Microsoft Flight Simulator, 
which default MSFS2004 FDE could not 
provide. This includes the separate axis for 
the steering and rudder operation, JSBSim 
scripting, autoflight functions, as well as 
correct ground behaviors of the aircraft. 

 
Project Structure 
 
The project executable is wrapped within a single 
MSFS2004 format gauge file (FSJSB.gau) and pro-
vides 3 main functions: 
 

• Starting, stopping and managing the built-in 
JSBSim engine, 

• Interfacing between the JSBSim engine and 
the MSFS (requires a registered Pete Dow-
son’s FSUIPC utility), 

• Synchronizing the JSBSim and MSFS2004 
execution. 

 
Project modules 
 
JSBSim wrapper: instantiates and manages execu-

tion of the JSBSim engine  (class instance) , using 
windows multimedia timer running at a frequency 
of 124 Hz. 
 
Interface module: 
Manages a data 
exchange between 
Microsoft Flight 
Simulator and the 
JSBSim wrapper. 
The interface 
module configura-
tion is stored in an 
external file 
(namely FSJSB.
XML) in the pro-
priety XML for-
mat, allowing the 
specification of 
the data flow as 
well as simple 
mathematical 
transformations.  
Interface module 
also provides 
means to direct the information flow to the XML 
format MSFS2004 gauges in order to bypass the 
internal Microsoft FDE and display the JSBSim 
data at the cockpit gauges directly. 
 
The FSJSB project is currently at the beta stage, 
and is free for testing and utilization in the research 
and non-commercial applications (to obtain the 
distributable, please contact sup-
port@majesticsoftware.com). 

JSBSim and Microsoft Flight Simulator: The FGJSB Project 
Oleksiy Frolov, Majestic Software 

FS9\

Aircraft\

Gauges\

AIR CRAFT.CFG
• specific airdynamics t o pr event 
M S fr om flying the plane
• .air  file name points t o the 
jsbsim  air cr aft XML  
configur ati on file
• no contact points

<sim fi le name >.XML
Contains  standard jsbsim  
configur ation for t he f light 
dynamics . This  file name should 
be the same as a SI M name 
( AI R file)

<engi ne  fi le na me >.XM L
Contains  standard jsbsim  
configur ation for t he engine(s ) 
of  this part icul ar  ai rcraft

FSJSBCONF. XM L
Contains fs jsb confi gur ation, 
necessary to integrate the M SFS and 
JSBSI M with r egards  to this  
par ticular  aircraft ( data exchang es  .. 
And so on)

Panel\ PANEL.CFG
•contains  standard MSFS  panel 
definit ions +  an invi sible 2D 
f sjsb panel. F SJS B panel will be 
brou ght  up aut omati cally by 
FS JSB.GAU at al l time in order 
to maintain contro l over  the 
MSFS. T hat also aff ects  the VC 
mode.

FSJSB.GAU

<t hruster file  
name>.XML
Contains standard jsbsi m 
confi guration for  the thrus ter  (s ) 
of this  par ticular aircraft

http://www.majesticsoftware.com
mailto:support@majesticsoftware.com


Page 10 

various fixes and additions, including the PID 
component mentioned above, the new scripting 
capabilities, some bug fixes, etc. You can 
download the new source and/or executable at 
www.jsbsim.org. 
 
New Integrators Implemented in JSBSim 
 
In recent testing, it was discovered that a tumbling, 
unpowered, vehicle following a ballistic trajectory 
would not hit the ground, but instead would oscil-
late about a particular altitude. Further investiga-
tion revealed that the Euler integrator used in 
JSBSim was not accurately propagating the state. 
[It should be noted that this was an unusual situa-
tion, and that in normal use with conventional air-
craft, the use of an Euler integrator is usually fine.] 
 
By shrinking the time step (down to about 1/5000 
seconds), a solution was arrived at. However, inte-
grating at 5000 Hz is not a viable solution in most 
cases! So, several additional single-pass integra-
tion schemes were added to FGPropagate: Trape-
zoidal, 2nd order Adams-Bashforth, and 3rd order 
Adams Bashforth (the current, experimental, de-
fault): 

 
 
 

This integrator was able to provide a solution for 
the unusual case above using a simulation execu-
tion rate of 120 Hz. 
 
Landing Gear Refinements Continue 
 
Efforts continue towards reducing jitter sometimes 
found in aircraft flight models. When the aircraft is 
stationary on the ground (V=0) the slip/skid angle 
is undefined, and that can cause problems. JSBSim 
has mostly eliminated that specific problem, but 
there remains a problem if brakes are applied while 
at rest, or at very low speed. 
 
The techniques applied to reduce jitter and motion 
in JSBSim are: 
 
• Coriolis acceleration is not applied while 

there is weight-on-wheels (WOW) 
• Wind effects are only applied as the aircraft 

gains speed 
• Centrifugal acceleration is not applied until 

the aircraft leaves the runway 
• Wheel/brake forces are faded out at very 

small velocity 
• A filter is applied to wheel slip angle and 

wheel forces at very low velocity 
 
Proper choice of landing gear spring and damping 
coefficients also helps to obtain the best gear per-
formance. ▲ 

JSBSim Moves to Lesser GPL License 
 
After considering the prospect for almost two 
years, JSBSim has changed its license to the LGPL 
(Lesser General Public License). Why did we do 
this? The use of the LGPL is generally discour-
aged, in favor of the regular GPL, except in certain 
cases. From the Gnu web site: “For example, on 
rare occasions, there may be a special need 
to encourage the widest possible use of a cer-
tain library, so that it becomes a de-facto 
standard. To achieve this, non-free programs 
must be allowed to use the library. A more 
frequent case is that a free library does the 
same job as widely used non-free libraries. In 
this case, there is little to gain by limiting the 
free library to free software only, so we use 
the Lesser General Public License.” 
 
For more information, see the full text of the li-
cense at: http://www.gnu.org/licenses/lgpl.html. 
 
 
PID Component Added to JSBSim Flight Con-
trol System Components 
 
A proportional-integral-derivative control compo-
nent has been added to the set of JSBSim flight 
control components. The component can represent  
any of the three control actions by itself or in any 
combination. Also, a trigger property can be speci-
fied that—if the value of that property becomes 
non-zero—the integrator inputs will be set to zero. 
This will prevent integrator wind-up. 
 
The format for specifying the PID component is as 
follows: 
 
 <pid name="name"> 
  <input> property </input> 
  <kp> p_value </kp> 
  <ki> i_value </ki> 
  <kd> d_value </kd> 
  <trigger> property </trigger> 
  <clipto> <min> value </min> 
           <max> value </max> </clipto> 
 </pid> 

 
Example: 
 
 <pid name="fcs/altitude-hold-pid"> 
  <input> fcs/ap-alt-hold-switch </input> 
  <kp> 0.031 </kp> 
  <ki> 0.000028 </ki> 
  <trigger> fcs/windup-trigger </trigger> 
  <clipto> <min>-1.0</min> 
           <max> 1.0</max> </clipto> 
 </pid> 
 
 
JSBSim Version 0.9.12 Released 
 
A new version of JSBSim has been released (or 
will be shortly).  The new version will include 

News 
 

]51623[
12 211 −−+ +−Δ+= ttttt yyytyy

http://www.jsbsim.org
http://www.gnu.org/licenses/lgpl.html


Page 11 Modeling Aerodynamic Moments in JSBSim 
Jon Berndt 

determine the moment produced by the pressure 
distribution over the airfoil – however, the moment 
will be different about any unique point on the 
airfoil. The most commonly selected point to refer-
ence the moment to is the wing quarter chord 
point. At this point, most airfoils (at subsonic ve-
locities) will have a constant moment coefficient, 
independent of angle of attack (at least below the 
stall). 
 
To bring this into perspective for a real aircraft, 
and data taken from a technical report, consider 
this excerpt from NASA Technical Memorandum 
72863, “Stability and Control Derivative Estimates 
Obtained from Flight Data for the Beech 99 Air-
craft”: 
 
“The derivative must be resolved to a flight 
center of gravity position of 26 percent of the mean 
aerodynamic chord. This is accomplished in the 
following equation: 

 
 
 

So, the moment coefficient data given in this tech-
nical report is referenced to the initial flight CG at 
26% mac.  The ARP should be set to this point. 
When the fuel burns off and the CG changes, it 
will automatically be taken into account. 
 
This feature in JSBSim can be handy in modeling 
the aerodynamics of a rocket, which might reach a 
very high velocity, and see the center of pressure 
vary widely as it passes through mach 1. In fact, I 
have recently seen one rocket modeled in JSBSim 
where the lift, side, and drag forces—acting at the 
ARP—were the sole means responsible for model-
ing the moments on the vehicle. ▲ 

When modeling aerodynamic forces and moments 
in JSBSim, one might be tempted to simply copy 
the force and moment coefficients from a textbook 
or paper that describes flight test data for the air-
craft in question. It is important to understand 
where the data comes from, how it was obtained, 
and – most importantly – what it really represents. 
 
This was made clear recently when a JSBSim user 
was modeling the flight of a rocket, using aerody-
namic properties calculated by the Missile DAT-
COM program. The user had set up Missile DAT-
COM to return moment coefficients that were ref-
erenced to the CG (center of gravity). A question 
was raised, however, because there is program 
code in JSBSim that looks like this: 
 
vForces = State->GetTs2b()*vFs; 
 
vDXYZcg = MassBalance->StructuralToBody(Aircraft->GetXYZrp() + 
                                                        vDeltaRP); 
 
vMoments = vDXYZcg*vForces; // M = r X F 
 
for (axis_ctr = 0; axis_ctr < 3; axis_ctr++) { 
  for (ctr = 0; ctr < Coeff[axis_ctr+3].size(); ctr++) { 
    vMoments(axis_ctr+1) += Coeff[axis_ctr+3][ctr]->GetValue(); 
  } 
} 

 
This may appear confusing at first, because the 
moments (vMoments) are calculated, then – appar-
ently – written over just a few lines later. Upon 
closer examination, one can see that the moments 
are actually added together (see the “+=” operator 
in the vMoments equation). The moments are ini-
tially set to a value: 
 
vMoments = vDXYZcg * vForces 

 
which represents, 
 
M = r × F 

 
where r represents a radius vector from the 
ARP (aerodynamic reference point) to the 
CG. The F represents the body force vector 
(lift, drag, and side forces transformed to the 
body axes) acting on the CG. This couple is 
later summed with the total aerodynamic 
moment in the nested for loop as seen 
above. 
 
What is the ARP, and why is it necessary? 
How does it relate to the data I am using to 
model an aircraft (or rocket) – the data I 
find in textbooks and tech reports, or from 
flight test, or from a program such as Mis-
sile DATCOM? 
 
If one integrates the pressure difference 
over the upper and lower surfaces of an air-
foil, the net lift is determined. The net lift 
acts at the center of pressure (this is not the 
same as the aerodynamic center). If one 
chooses a point on the airfoil, one can also 

4/,cmC
α

( )4/,4/, cflightCGLmm XXCCC
c

−−=
/ ααα

Wingtip Vortices—The beautiful image 
below illustrates trailing wingtip vortices 
exceptionally well (in addition to being an 
exceptional photograph). This photograph is 
of a Boeing 777 approaching London’s 
Gatwick airport. The image was taken on 
July 10, 2006, by Steve Morris, AirTeamI-
mages. The photograph is reprinted here 



Page 12 

software has been performed at the Simulation and 
Analysis Facility (SIMAF) located at Wright Pat-
terson AFB, Ohio. SIMAF participates in a num-
ber of distributed events each year.  The vast ma-
jority of the distributed simulation software used in 
the facility has been “home grown” utilizing the 
EAAGLES framework. Applications built utilizing 
the framework include cockpits (F-16), ground 
control stations (Predator MQ-9), threat Integrated 
Air Defense Systems (IADS) and a futuristic battle 
manager. 
 
OpenEaagles has been released as public domain 
code. This was done to encourage its use through-
out the community. OpenEaagles closely tracks 
and incorporates new enhancements to EAAGLES, 
but does not include some functionality. 
 

Interfacing to JSBSim 
 
OpenEaagles is a framework that serves as a simu-
lation design pattern as shown in Figure 1. Most of 
the elements that are needed to build a full-up 
simulation application exist within the framework, 
with one notable exception, the function main(). 
This function resides with the executable applica-
tion, not the framework. 
 
Typically main() is closely associated with the 
Station class which connects the simulation models 
to graphics and device I/O. The Station class also 
contains a Simulation class which takes care of 
basic simulation activities such as managing a list 
of Players/Entities of interest. A Player can have 
many components and systems attached to it. Of 

(Continued on page 13) 

OpenEaagles is an open source C++ framework 
designed to support the rapid construction of vir-
tual (human-in-the-loop) and constructive simula-
tion applications. It has been used extensively to 
build DIS compliant distributed simulation sys-
tems. It is based upon EAAGLES (Extensible Ar-
chitecture for the Analysis and Generation of 
Linked Simulations), a popular simulation frame-
work developed and maintained by the U.S. Air 
Force to support a multitude of simulation activi-
ties. 
 
As a framework, OpenEaagles provides a design 
pattern for how to construct a simulation. The goal 
is to provide an application developer a solid foun-
dation so that robust, scalable, virtual, construc-
tive, stand-alone, and distributed simulation appli-
cations can easily be built. It leverages modern 

object-oriented software design principles while 
incorporating fundamental real-time system design 
techniques to meet human interaction require-
ments.  
 
By providing abstract representations of system 
components (that the object-oriented design phi-
losophy promotes), multiple levels of fidelity can 
be easily intermixed and selected for optimal run-
time performance. Abstract representations of sys-
tems allow a developer to tune the application to 
run efficiently so that human-in-the-loop interac-
tion latency deadlines can be met. On the flip side, 
constructive-only simulation applications, that do 
not need to meet time-critical deadlines, can use 
models with even higher levels of fidelity.  
 
The bulk of the development for the EAAGLES 

OpenEaagles Simulation Framework Utilizing JSBSim 
Douglas Hodson, Chris Buell 

For more information on OpenEaagles 
see www.openeaagles.org 

Figure 1.   The OpenEaagles Simulation Framework  

http://www.openeaagles.org


Page 13 JSBSim is currently being called in the dynamics 
phase at a rate of 50Hz. 
 
Building Applications 
 
Building an application with OpenEaagles consists 
of extending select classes of interest and writing a 
mainline. Typically, the mainline will call an 
OpenEaagles provided parser that will read an in-
put file, and create the object hierarchy which is 
the simulation application. The input file describes 
in a simple language, the objects to create and the 
attributes to set. 
 
Wherever a Player is defined, the creation of a 
JSBSimModel object (which was subclassed off of 
the DynamicsModel class) can be specified as the 
dynamics model of choice. The OpenEaagles in-
puts associated with the JSBSimModel class in-
clude the root directory for the JSBSim data files 
and a string that specifies the model of interest. 
With this information the interface class will call 
JSBSim, thus allowing it to process its own input 
files. 
 
Thanks to C++ and the object-oriented nature of 
OpenEaagles and JSBSim, multiple instantiations 
of JSBSim (i.e. multiple Players) can easily be 
created and utilized within the same simulation 
application.  
 
We see JSBSim being 
utilized as a high fidelity 
aero model driven by a 
human operator. The ex-
ample fighter cockpit 
application, as shown in 
Figure 2, is a full-up 
simulation application 
where the pilot is control-
ling or flying one of the 
players in the player list. 
All stick and throttle in-
puts as well as graphic 
outputs are associated 
with the Player through 
the use of an “ownship” 
pointer that exists in the 
Station class. This connection is typically made by 
extending the Station class and customizing it for 
the application being built. 
 
Examples such as this will be demonstrated at
I/ITSEC 2006 (Interservice/Industry Training, 
Simulation & Education Conference). This year 
JSBSim will be the dynamics model of choice. 
 
Final Thoughts 
 
The OpenEaagles development team is convinced 
that we should utilize JSBSim as an important 3rd 
party tool, not only to fill a void in OpenEaagles,
but also as an addition to other flight dynamics
models currently utilized within the Air Force.
We are excited by the possibilities of modeling
a more diverse set of air vehicles. ▲ 

(Continued from page 12) 
particular interest related to JSBSim is a Players 
dynamics class. Each Player can have an associ-
ated dynamic model. 
 
OpenEaagles provides a dynamic model that 
serves as an interface class, but unfortunately, spe-
cific flight models could not be included in the 
public domain release. Because JSBSim is a ma-
ture model it made sense for the OpenEaagles pro-
ject to utilize it. Since JSBSim is also coded in 
C++, extending the included dynamics class to 
utilize JSBSim was fairly straightforward. 
 
Since JSBSim can be configured to represent sev-
eral aero propulsion systems, we have refined the 
OpenEaagles dynamics class to include features 
never before considered. For example, most of the 
aerodynamic models we have encountered, treat 
multiple engines as one. We did include the capa-
bility to model multiple engines in the dynamics 
class but it had never been tested. Attributes asso-
ciated with engines other than jet turbines also 
needed to be considered. Specifically, the Propeller 
and TurboProp engines which requires additional 
controls (fuel mixture, prop pitch, etc). 
 
Calling JSBSim 
 
OpenEaagles is a frame-based system in which 
code is partitioned to support the development of 
real-time systems. As a frame-based system, delta 
time is passed as an argument to models so proper 
calculations involving time can be performed. 
Having models rely on delta time for calculation 
means the frequency of the entire system can 
change without having to change each and every 
model (so long as Nyquist rates are met). Addi-
tional time related information is recorded in terms 
of cycles (16 frames or sometimes called a major 
frame) and phases. Phases sequence the flow of 
data throughout a model. Four phases are currently 
defined: 
 

• Dynamics -- update player or system dynam-
ics including aerodynamic, propulsion, and 
sensor positions (e.g., antennas, IR seekers). 

 
• Transmit -- R/F emissions, which may con-

tain datalink messages, are sent during this 
phase.  The parameters for the R/F range 
equation, which include transmitter power, 
antenna pattern, gains and losses, are com-
puted. 

 
• Receive -- Incoming emissions are processed 

and filtered, and the detection reports or data-
link messages are queued for processing. 

 
• Process -- Used to process datalink messages, 

sensor detection reports and tracks, and to 
update state machines, on-board computers, 
shoot lists, guidance computers, autopilots or 
any other player or system decision logic. 

 

Figure 2



sourced and released. You can read more about 
Janus (and request a copy) here: http://www.dsto.
defence.gov.au/research/4675/. The file format for 
JSBSim was an early example of the use of XML 
in describing aircraft aerodynamics. In turn, 
JSBSim has incorporated some of the features de-
veloped for AERO-ML, moving the JSBSim for-
mat closer to this emerging standard. 
 
There were quite a number of very interesting pa-
pers presented during the conference, which ran 
from August 21 through August 24. Among the 
more interesting papers submitted were: 
 
• A Generic Multibody Parachute Simulation 

Model 
• Adjusting a Helicopter Rotor Blade Element 

Model to Match Sparse Criteria Data 
• Creating Flight Simulator Landing Gear Mod-

els Using Multidomain Modeling Tools 
• Development and Qualification of a FNPT II 

Helicopter Simulator - Lessons Learned 
• Development of a Pilot-in-the-Loop Aircraft 

Simulation Laboratory 
• Distributed Real Time Simulation Using DIS 

and XML 
• Flexible Uses of Simulation Tools in an Aca-

demic Environment 

(Continued on page 15) 

I had the opportunity to attend the 2006 American 
Institute of Aeronautics and Astronautics (AIAA) 
Modeling and Simulation Technology (MST) Con-
ference this year. It was held at Keystone in Colo-
rado. The location was breathtaking, and the con-
ference was great. The AIAA conference held in 
August of each year is really a series of four paral-
lel conferences: the Guidance, Navigation, and 
Control (GNC) Conference; the Atmospheric 
Flight Mechanics (AFM) Conference; the AIAA/
AAS Astrodynamics Specialist Conference, and 
the MST Conference, as mentioned. When you 
register for one conference, you gain access to all 
the conferences. 
 
This year, among the several workshops given, 
there was one that demonstrated the use of AERO-
ML (a.k.a. DAVE-ML). AERO-ML is a pending 
AIAA standard that specifies a formal data format 
as a medium for exchanging aircraft aerodynamic 
characteristics between different simulations. The 
workshop speaker was Bruce Jackson (NASA 
Langley, “LaRCSim” author). I attended this inter-
esting workshop, and even said a few words about 
the use of XML by JSBSim. Also present at the 
workshop was Geoff Bryan, an engineer from the 
Defence Science and Technology Organisation 
(DSTO), a government research organization in 
Australia. DSTO has created a software library in 
C++ called Janus that reads files in AERO-ML 
format. That library has been recently open 

The 2006 AIAA Modeling and Simulation Conference in 
Keystone, Colorado 
Jon S. Berndt 

The call for papers for the AIAA Modeling and Simulation Technologies Conference is now open!  
Technical Papers are now being solicited in the following suggested topic areas: 
 

•Best Student Paper  
•Unmanned Aerospace Vehicles and Unmanned Systems  
•Aircraft Dynamics  
•Aircraft Flying Qualities  
•Projectile and Missile Dynamics and Aerodynamics  
•Reentry and Aeroassist Vehicle Technology  
•Reusable Launch Vehicles  
•Unsteady and High Angle-of-Attack Aerodynamics  
•Linear and Nonlinear Equations of Motion  
•Atmospheric Flight Mechanics Education  
•Vehicle Flight Test  
•Invited Sessions and Workshops 

This list is intended to provide ideas for papers and is not meant to limit papers to mentioned topics.  
Prospective authors are invited to electronically submit abstracts of 500–1000 words.  
The abstract deadline is 1 February 2007.  
 
AIAA Guidance, Navigation and Control Conference and Exhibit  
AIAA Modeling and Simulation Technologies Conference and Exhibit  
AIAA Atmospheric Flight Mechanics Conference and Exhibit  
20-23 August 2007  
Marriott Hilton Head Beach and Golf Resort  
Hilton Head, South Carolina  
 
To view the full call for papers, or to submit a paper visit http://www.aiaa.org/events/mst 

AIAA Modeling and Simulation Technologies Conference and 
Exhibit 2007 Call For Papers Now Open! 

Page 14 

http://www.dsto.defence.gov.au/research/4675/
http://www.aiaa.org/events/mst


(Continued from page 14) 
• Ground Dynamics Model Vali-

dation by Use of Landing Flight 
Test Data 

• High Fidelity Landing Gear 
Modeling for Real-Time Simula-
tion 

• Modeling of Apparent Mass Ef-
fects for the Real-Time Simula-
tion of a Hybrid Airship 

• Modeling, Simulation and Rapid 
Prototyping of an Unmanned 
Mini-Helicopter 

• Simulation of Airship Dynamics 
• The Development of the Tri-

Turbofan Airship Model for 
Autonomous Flight Control Re-
search 

• … and many others. 
 
There were also quite a few papers 
submitted for UAV modeling and 
simulation, which is of course a hot 
topic now. 
 
Beginning at 8:00 in the morning on 
each of the four days, a keynote 
speech was given in one of the four conference disciplines (GNC, 
MST, AFM, and  AS). Following that, papers covering related topics 
were presented in a session. It was sometimes hard to choose among 
individual presentations to attend. For this event, some of the presen-
tation rooms were not in the same building, which required a five or 
ten minute walk between presentations. Advance and alternate plan-
ning is important at conferences. 
 
On the last full day of the conference I was invited to attend the 
Modeling and Simulation Technical Committee (M&S TC) meeting. 
Within AIAA are a number of Technical Committees. From the 
AIAA web site:  
 

AIAA Technical Committees (TCs) bring together experts in their 
fields and given them the opportunity to exchange knowledge and 
get to know their colleagues from around the globe. These commit-
tees participate in numerous activities: they develop and adminis-
ter over 20 technical conferences each year; conduct professional 
development courses, produce books, and work with K-12 students 
to promote an interest in engineering education. And that’s just 
the start. The TCs also honor technical leadership through Techni-
cal and Best Paper awards; serve as journal and book reviewers; 
formulate technology assessment packages for the non-technical 
public, and even develop and judge college student design con-
tests. 

 
I am nominated for membership in the M&S TC. The process and 
guidelines for membership are being reworked at this time. I plan to 
attend the next M&S TC meeting in December. 
 
Finally, I heartily recommend to technically oriented and educated 
readers to consider attending the Modeling and Simulation Confer-
ence. The conferences are well attended and it’s a “target rich envi-
ronment” for modeling and simulation information. I met some won-
derful people, and the food and location was first-rate. Next year (see 
the announcement on page 14) the conference will be held at Hilton 
Head Beach Resort in South Carolina. ▲ 

Above and below: The setting for the 2006 AIAA GNC/MST/AFM/AS confer-
ences was in Keystone, Colorado. At the beginning of the week, we were told that 
it might rain every day. Instead, it was sunny almost every day. Perfect! 

Page 15 



Many users of FlightGear, JSBSim, and other 
simulators find carrier landings to be a tantalizing 
challenge, with night carrier landings being the 
pinnacle of challenges. 
 
Onboard the Lexington was an A-7E Corsair II 
Night Carrier Landing Simulator (NCLS, see pho-
tograph, page 15). It is currently being refurbished. 
For information on the Vought A-7 aircraft, see the 
outstanding Vought Historical web site at: 
http://www.vought.com/heritage/. The NCLS were 
produced by Vought and two were delivered to the 
Navy in 1971. These were the first simulators to 

(Continued on page 17) 

I visited the aircraft carrier U.S.S. Lexington 
(CV16) Museum recently and stayed onboard 
overnight as part of a scouting outing with my 
seven year old son.  Visiting the carrier and explor-
ing it with my son was exciting enough (and I 
wholeheartedly recommend visiting the Lexington 
museum if you are ever anywhere even close to 
Corpus Christi, Texas), but it was even more spe-
cial because my father served on the Lexington 
exactly fifty years ago, during 1956 and 1957. 
 
To my initial surprise, there were several simula-
tors aboard Lexington. I thought it would make a 
good article for this season’s newsletter. 

The Link Blue Box Pilot Trainer The “Meatball” training device for LSO’s (Landing Signal Officers) 

Above: The sun rises over Corpus Christi 
Bay in a photograph taken by the author 
from the flight deck of the U.S.S. Lexing-
ton Museum. The tail of an F-14 is in the 
foreground. 

Page 16 Simulators at the “U.S.S. Lexington Museum on the Bay” in 
Corpus Christi, Texas 
Jon S. Berndt 

http://www.vought.com/heritage
www.usslexington.com


(Continued from page 16) 
combine real-time, out-the-window, computer-generated scenery with a cock-
pit. The simulator also featured a motion base. A nearby instructor station 
allowed the instructor to control the scenario. The view presented to the pilot 
showed the outline of the carrier and the “meatball”. These simulators were 
unveiled at NAS Lemoore on May 5, 1972. 
 
The “meatball” training device (see photograph, page 14) is used by pilots 
and LSO’s (Landing Signal Officers) to familiarize with the device, formally 
called an OLS (Optical Landing System).  The OLS is an arrangement of 
lights of various colors that incorporates a Fresnel lens. The lights are pro-
jected at different angles above the horizon along the glideslope. The lighting 
pattern appears different to the pilot depending on how the approach is pro-
gressing, so he or she can tell where they relative to the ideal glideslope. For 
more information on the OLS, see the NATOPS LSO Manual at http://
navyair.com/LSO_NATOPS_Manual.pdf. 
 
There is an old Link “Blue Box” aboard Lexington. Ed Link built his first 
pilot trainer in his father’s piano and organ factory, completing it in early 
1929. During the 1930’s, Ed and his brother ran a flying school, selling train-
ing lessons after hours in the factory. When the Depression hit, it hit their 
training business hard. However, when the Army Air Corps started delivering 
the mail, it became apparent (after a particularly bad bout of weather caused 
the loss of nearly a dozen pilots) that some kind of training device would be 
useful. The Army pilots had been trained to fly by watching the ground. They 
decided to take a closer look at Link’s training device. From the Link History 
web site: 
 

On a foggy, misty day in 1934, a group of Army officers awaited 
Ed's arrival in Newark, New Jersey. Ed was flying in from Bing-
hamton, New York. 
 
The officers, convinced that he couldn't make it in such soupy 
weather, were about to leave. Just as they were about to leave 
they could hear the sound of an approaching airplane. Within a 
minute's time an aircraft circled the field and touched down on the 
runway. It was Ed Link...he had flown in on instruments and dem-
onstrated that effective flight was possible even during adverse 
weather conditions. 
 
The military officials were sold on the promise training to fly by 
instruments could offer and, shortly thereafter, the Army Air 
Corps ordered six of his trainers for $3,500 a piece. By the time 
the order was completed other orders started coming in and Link 
Aviation Devices, Inc. was formed to meet the increased trainer 
production demand. 
 
The company expanded rapidly, in spite of some facility setbacks 
in the mid 1930s, and during World War II the ANT-18 Basic In-
strument Trainer, known to tens of thousands of fledging pilots as 
the Blue Box, was standard equipment at every air training school 
in the United States and Allied nations. In fact, during the war 
years Link produced over 10,000 Blue Boxes, turning one out 
every 45 minutes. 

 
Aboard the Lexington museum is also a motion base simulator that seats 15 or 
so people, and features a simulated ride in an F-18 on an attack mission. It’s 
convincing enough and my seven year old son loved it. 
 
I found the simulator exhibits (particularly the A-7E simulator) to be interest-
ing. Most of all, though, the experience of exploring the ship, perusing the 
exhibits, becoming acquainted with the various smells, and walking on the 
flight deck with my son  at sunrise made it a memorable time. 
 
The U.S.S. Lexington Museum can be seen from the air at Google Maps.  ▲ 
 

If you’ve got some time to kill late at night: using maps.
google.com, how many aircraft carriers can you find—and 
identify? It might not be as hard as you’d think it would be. 
Extra credit: find one “at sea”. 

The Vought A-7E Carrier Night Landing Trainer cockpit (above, 
and instructor station (below). 

Page 17 

http://navyair.com/LSO_NATOPS_Manual.pdf
http://navyair.com/LSO_NATOPS_Manual.pdf
http://maps.google.com/maps?f=q&hl=en&q=uss+lexington+museum&sll=37.0625,-95.677068&sspn=61.328812,85.253906&ie=UTF8&t=k&om=0&z=17&ll=27.814777,-97.388708&spn=0.004773,0.007231&iwloc=A


A Boeing 747-45E approaches Vancouver International Airport in British Columbia. This beautiful photograph was 
taken on July 29, 2006, by Marek Wozniak. Reprinted here with permission of the photographer. 

 

Visit us on the web at: 
www.jsbsim.org 

Page 18 

Simulate This! The “Transition” 
Aerodynamic trade studies and early design iteration on the Transition were conducted using a vortex-
lattice code called AVL written by Prof. Mark Drela at MIT.  Airfoil design was also assisted by X-foil 
(also written by Prof. Drela).  These analyses were cross checked with a 1/5th scale model of the Transi-
tion that was measured in the MIT Wright Brothers Wind Tunnel -- verifying the predicted stall perform-
ance and stability of the Transition design. 
 
Terrafugia, which is derived from the Latin for “escape from the earth,” was founded by graduates of the 
Department of Aeronautics and Astronautics at the Massachusetts Institute of Technology and incorpo-
rated in 2006. Currently based in Cambridge, Massachusetts, Terrafugia combines solid aircraft design 
fundamentals with a focus on creativity and customer service. Terrafugia’s mission is the expansion of 
personal mobility through the practical integration of land and air travel. 
 
People have dreamed of “roadable” aircraft since 1918 when Felix Longobardi was issued the first patent 
for a vehicle capable of both driving on surface roads and flying through the air. The most well known, 
and arguably most successful roadable aircraft was developed in the 1950s and 60s by Molt Taylor.  
There are also many visionaries developing their own concepts for a roadable aircraft. This plurality of 
concepts shows that there is a perceived need for a vehicle of this type. Unfortunately, the cost/benefit of 
these vehicles never justified serious financial backing – the real need was not sufficiently acute to jus-
tify the performance sacrifices of a dual use vehicle. ▲ 

http://www.jsbsim.org

