Design & Implementation of
Virtual Simulations

Douglas Hodson, doug@OpenEaaqgles.org
David Gehl, dave@OpenEaaqgles.org

mailto:doug@OpenEaagles.org
mailto:dave@OpenEaagles.org

Agenda

Big Picture
Visual System
Interoperability
Dynamics Model
Design Patterns

Simulation
m Graphics Hierarchy
= BExamples (100% Open Source)

Summary

Big Picture

Anatomy of a Flight Simulator

Anatomy of a
Distributed Virtual Simulation

Each “Simulation”
Shares Its State Data
Across a Network

Observations

B Because of the Human. ..

® Visual System and Pilot Vehicle Interface (PVI)
Must be Realistic Enough to be “Believable”

® Simulation Must Respond to Pilot Inputs (e.g.,
Control Inputs) in a Timely Manner

® Simulation Must Advance Time in Sync with the
“Wall clock™

® Must Execute Physics-based Models, such as an
Aerodynamics Model of the Aircraft

Virtual Simulation

m Definition

m Real People and/or Real System Hardware
Interacting with a Simulated System

®m This 1s Not the Case with Most Simulations
B Result

® By Including People in the Simulation System, the
Software Design of the System is More Complicated

Virtual Simulation Requirements

m Introducing Real-World Elements
(People/Hardware) Imposes Timing Constraints
on the Software System

m Systems with Timing Constraints are Called
“Real-time” Systems

m Real-time Systems have Nothing to do with how
“Fast” a Computer Runs, it has Everything to
do with Reliably Meeting Timing Deadlines

Real-Time Concepts

m Software Systems with Timing Constraints
= Executes in Sync with Wall-clock

m Interaction Response Characteristics

m Time to Generate Outputs from Inputs

m Real-time Paradigm: Partitioning of Code

= Foreground
B Jobs that have a Time Deadline.
= Example: Model Mathematics, Redrawing Interface Displays, etc
m Executed on a Periodic Basis.
m Bxample: 50 Hz for Models, 20 Hz for Interface Displays
= Background
B Jobs without Timing Constraints.
m Example: Logging Data to a Hard Drive
m Execute Whenever Possible. (But Must Finish at Some Point.)

The Visual System

Virtual Terrain Project

Building
Extractor

3d Runtime

Virtual Terrain
Builder Environment

® Open-source Tool to Build Visual Databases
B Well Documented with Online Tutorials

m Website Provides Good References for Source Data

ject

in Pro

]l Terra

1rtua

v

SubrScene IGS

(Image Generation Solution)

m Open-source Simulation Visualization Toolkit

® Standalone Visual System

m Can Drive Single Monitor or Multi-channel Dome System
m SDK for Integration into Other Applications
B Built with OpenSceneGraph

CIGI

m Common Image Generator Intertace

m Open-source Interface Designed to Promote a
Standard Way for a Host Device to
Communication with an Image Generator (IG)

i

Out-The-Window Display

2 SimpleDTW] =|0f =]

m Typically a Separate
Application that Interfaces
with the Main Simulation

m SceneGraph-based Graphics

m OpenSceneGraph is a
Mature Open-source
Framework to Build these

Applications

m Common Image Generator
Interface (CIGI)

Distributed Virtual Simulation

Each Simulation
Provides Data for its
own Visual System

Interoperability

(Connecting Simulators)

Distributed Virtual Simulation

How we Share
Information (Data)
DIS, HLLA, TENA,
DDS, etc

Distributed Interactive
Simulation (DIS)

® Open Standard for Conducting Real-time Platform-
level Wargaming Across Multiple Host Computers

® Defined by IEEE

B Encodes Basic Simulation State Information into
Protocol Data Units (PDUs) and Exchanges them with
Standard Network Protocols, such as UDP

m Widely-used, Well-defined, and it Works!

High Level Architecture (HLA)

m General Purpose Architecture for Distributed
Computer Simulation.

m Rather than a Network Standard like DIS, HILA
Defines an Architecture with a Set of API
Standards

m User(s) Define the Data to be Shared

...the poRTIco project...

m Fully Supported, Open-source, Cross-platform
HILA RTI Implementation

B WWW.pOrticCOproject.org

o

Dynamics Model

Dynamics Model

m |SBSim 1s an Open-source Cross-platform Flight
Dynamics Model (FDM)

m Fully Contigurable Flight Control System,
Aerodynamics, Propulsion, LLanding Gear
Arrangement, etc.

m [nterfaced and Utilized by OpenEaagles

|SBSim

Design Patterns

(Computer Science Perspective)

What is a Design Pattern?

Is a General Reusable Solution to a
Commonly Occurring Problem in
Software Design.

It 1s not a “Finished” Design that
can be Transformed Directly into

Code.

It 1s a Description or Template for
How to Solve a Problem that can be
Used in Many Different Situations.

Gained Popularity after Gamma’s
Book was Published in 1994.

Design Patterns
Elements of Reusable
Object-Oriented Software

Erich Gamma

Richard Helm

Ralph Johnson
les

SIS DNILNIWOD TWNOISSHON AFTISIMNOSIaY &

MVC Pattern

Model

(Simulated Systems)

m Model 1s the Application’s Domain Logic
m View 1s the Application’s Graphical Displays

m Controller Connects Model to View(s)

Simulation Pattern

m Asynchronous

Real-time EXecutiOﬁ Of Slmulated

Functi .
L System, Graphics and
e Network 1/0

m Architecture Maps to
Real-time Design
Paradigms

m Good “Fit” with Virtual
Simulation
Requirements

m [everages Multi-cpu &
Multi-core Systems

Simulation

Player Pattern

11" (Auto) Pilot Model

=1 RF Signature
0.1
Dynamics Model

JSBSim

Onboard Computer

Navigation System

Datalink

Radio

Gimbal / Antenna

Sensor

Stores Manager

Store

Real-Time Component For
Hierarchical Modeling

Component
+ unsigned int cycle
+ unsigned int frame
+ unsigned int phase
+ update TC(float dt)

+ updateData(float dt)
+ add()
+ remove()

+ getChild()

m updateTC — Placeholder for Time Critical Jobs
m updateData — Background Processing

Scheduling Model Code
(Cyclic Scheduler)

|<— Major Cycle —>|

m Provides More Modeling Flexibility

m Code can be Scheduled to Execute in Different Frames

®m Phases Provide Order
m Hxample: Player Dynamics Computed in First Phase of Each Frame
m Hxample: RF Sensor Calculation Performed in Second Phase

Player Example

Propulsion

® Modeled as a Hierarchal System

m Based on Component to Execute in Real-time

Player Implementation

Model (State) Logging, etc
<<Foreground== <<Background=>

Player

<<Component>>

Sensor Dynamics
<<Component>=> <<Component>=

RF IR Aero Propulsion
<<Component>> . <<Component>> <<Component>> <<Component=>
EO
<<Component>>

Extending Component
(Graphics and I/O)

NetworkIO

+ draw(float dt) + inputFrame(float dt)
+ outputFrame(float dt)

The Simulation

(Introducing the OpenEaagles
Simulation Framework)

Features

Implements MVC and Component Design Patterns
RF & IR Modeling Environment, Sensors, etc
Vehicles, Missiles, Bombs, Navigation, etc

Support for Reading Dafit & Terrain File Formats

State Machine to Build Al Agents

Extensive Graphics Library to Build Simple or
Complex Interactive Displays

Support for CIGI-oriented Visual Systems
DIS, HLLA & TENA Interoperability Interfaces

Input File Structure & Parser

Design Concept

m Constructive Features

m Flexibility to Define New Simulations and Scenarios from
Databases of Reusable Components

m Systems and Missions
m Change Behavior or Properties of Components and Systems

via Input Files

m Virtual Features

® Techniques and Rules to Ensure Models can Meet Time
Critical Requirements

m Pilot-in-the-Loop

m Hardware-in-the-Loop

Features

m Software Toolkit

= Consists of Configurable and Extendable Simulation
Components

m Allows Users to Configure Their Simulation to Meet Their
Own Unique Requirements

B Performance
® Designed for Real-Time Performance

= All Components Contain an Interface for a Frame-based,

Time-Critical Thread

m Standard Real-Time Simulation Rules Govern how Time-
Critical Elements of the Component are Modeled

Features

m Object-Oriented Components

= Provide a Basic Object System from which All Component are Built

Common Framework to Build Constructive and Virtual Simulation
Components

m Define Interfaces and Enforce Coding Standards

m Flexibility & Scalability

Common Simulation Components and Their Interfaces are Defined as
Part of the Simulation Foundation Classes

Classes can be Created and Reconfigured from Input Files

m Attributes and Behaviors can be Extended by Deriving New Classes

Users can Build and Add New Higher Fidelity Components as Needed,
and Intermix these Components with Other Lower Fidelity Models

Features

m Distributed, Interactive Simulations

m Can be Run as a Single Constructive or Virtual Program, it
is Designed to Allow Users to Distribute their Simulation
Environment Across Numerous Computers

B Open System

® Windows, Linux, etc

m Graphics Toolkit

m For Modeling Interactive Pilot Vehicle Interfaces (PVI) and
Control Displays

m Includes a Library of Reusable Aircraft Instruments

Simulation Application

()

Framework "

())) (

o _ c— L
J: :[:I: l .-"- -"‘-. ,—.|I
L, A W

) c‘:» r’)

O (YRY
Interface - — - i

main ()
i Application !

Domain // code

m Application Developer Provides
m Specifics, Data and/or Maybe Additional Models
m Process/Threading Environment
m Supports Single and Multi-core Architectures
= main() function

Libraries /Packages

- Moving Map

Vehicles HLA

Device /0| |DAFIF Basic OpenGL
Basic Foundation Classes

Mature Graphics Hierarchy
for Building Operator-Vehicle
Interface Displays

Examples

Primary Flight Displays

158 ARM ‘ HDG SEL ‘U‘HQU PTH
4571
'
188- B
Y -11BB8A8 E—
B 2=
-1le88 !~
$- 34BEH |
! 11438 | —
LTe}] g
40-
ﬁ53 =112688 2-
ADA 542) A
GSPD 9
3 _Tippp 799
s, ~11ege
£ 10,0
CDI SRC
RMS/ILS1

- /0.1

PFD / Instruments

1
4]
5]
B
F
P
M

(=1 111

&9 ",
~8 -
: — :
~7 3

4{ E 4 \w.

/, 5 N\
! 1 | l""
\ é /
~ 7/

S1e8 , 20

i PERCENT
99 /4@-

‘\II'IH,

-

S

Putting it All Together

7 Samphe 0TW

Station

Real-time
Functions

Simulation
. - - he -1
- = ycles, Frames

- Phases

S & -
ARM DG SEL |VN¢ H
188~ - Fi
CMD
. N ligee .

\
168- \
- \ “ 1iemm -\

~— ||
128- 1-
| }13 11280 2
B. — 5 =
188~ |
—1lggm ¥
5.238 : =
7. TeLL e
e B oBE A g
B @,
£ =y

Radar Simulation

RKR
Signal(loglB®)

Example Simulation

9 Samphe0TW

158

42p-

B-Scan

38

468~

28 [

360~

MOZTAQ

34B-

L
5. 236

BERD
A.92
ot avl G,
P | 4
N 88 of .

e & .

. &8y

A L] R .

ARM |H]]E SEL |UNQ\«' PTH

CMD
R

=101 x|

457M

=Iovog

—-14608 &~

- 3724

51D
111 1A

Summary

m Virtual Simulation Characteristics
= Real Time System

® Open Solutions

= Visual Systems
m Virtual Terrain Project
m OpenSceneGraph
m SubtScene
m CIGI
= Interoperability

m DIS - IEEE Standard
m HLA — “poRTIco project”

= Dynamics Model
m JSBSim

® Simulation Framework
m OpenFaagles

References

“Design & Implementation ot Virtual and Constructive
Simulations Using OpenFEaagles” by Rao, Hodson,
Stieger, Johnson, Kidambi and Narayanan, 2007

“Networked Virtual Environments: Design and
Implementation™ by Singhal, Zyda

“Building Distributed Simulation Utilizing the
EAAGLES Framework™ by Hodson, Gehl and
Baldwin, I/TTSEC 2006.

“Real-Time Design Patterns in Virtual Simulations™ by
Hodson, Baldwin, Gehl, Weber, Narayanan

Backup Slides

Interoperability Pattern

Player List
Local - No NIB
Remote - NIB

Template
Players

Ntm = Network Type Mapper
Nib = Network Interface Block

	Design & Implementation of Virtual Simulations
	Agenda
	Big Picture
	Anatomy of a Flight Simulator
	Anatomy of a�Distributed Virtual Simulation
	Observations
	Virtual Simulation
	Virtual Simulation Requirements
	Real-Time Concepts
	The Visual System
	Virtual Terrain Project
	Virtual Terrain Project
	SubrScene IGS�(Image Generation Solution)
	CIGI
	Out-The-Window Display
	Distributed Virtual Simulation
	Interoperability�(Connecting Simulators)
	Distributed Virtual Simulation
	Distributed Interactive�Simulation (DIS)
	High Level Architecture (HLA)
	…the poRTIco project…
	Dynamics Model
	Dynamics Model
	Design Patterns�(Computer Science Perspective)
	What is a Design Pattern?
	MVC Pattern
	Simulation Pattern
	Player Pattern
	Real-Time Component For�Hierarchical Modeling
	Scheduling Model Code�(Cyclic Scheduler)
	Player Example
	Player Implementation
	Extending Component�(Graphics and I/O)
	The Simulation�(Introducing the OpenEaagles�Simulation Framework)
	Features
	Design Concept
	Features
	Features
	Features
	Simulation Application
	Libraries/Packages
	Mature Graphics Hierarchy�for Building Operator-Vehicle Interface Displays��Examples
	Primary Flight Displays
	PFD / Instruments
	Putting it All Together
	Radar Simulation
	Example Simulation
	Summary
	References
	Backup Slides
	Interoperability Pattern

