
BasicGL FoundationBasicGL Foundation ClassesClasses
& Instrument Library& Instrument Library

Revised: Revised: Nov 14, 2006Nov 14, 2006

Software Layers &Packages

Basic Foundation Classes (basic)

Basic OpenGL Classes (basicGL)Simulation Foundation Classes

Sensors

Vehicles

Networks

OpenGL FreeType

Glut FTGL

Stations

Simulations DeviceIO

Weapons

BasicGL
Class Hierarchy

LcObject

LcComponent LcGraphic

LcField LcRotary LcRotary2

LcPoint

LcLine

LcLineLoop

LcPolygon

LcCircle

LcPage

LcAsciiText

LcNumericRo

LcCursor

LcSpecialText

LcDirRo

LcOctalRo

LcHexRo

LcTimeRo

LcGlutDisplayLcDisplay

LcLatRo

LcLonRo

LcFont …

LcGraphic Station Structure

+event(in event : const int, in obj : const LcObject* = 0) : bool
+updateTC(in dt : const LCreal = 0.0f)
+updateData(in dt : const LCreal = 0.0f)
+isVisible() : bool
+setVisibility(in v : const bool)
+onSetVisibility(in osvobj : const LcNumber*) : bool
+draw()
+drawFunc()
+lcRotate(in a : const LCreal)
+lcRotate(in x : const LCreal, in y : const LCreal, in z : const LCreal, in a : const LCreal)
+lcTranslate(in x : const LCreal, in y : const LCreal)
+lcTranslate(in x : const LCreal, in y : const LCreal, in z : const LCreal)
+lcScale(in s : const LCreal)
+lcScale(in sx : const LCreal, in sy : const LCreal)
+lcColor(in nc : LcColor*)
+lcSaveMatrix()
+lcRestoreMatrix()
+setColor(in cobj : const LcColor*) : bool
+setColor(in cnobj : const LcIdent*) : bool
+setFlashRate(in frnum : const LcNumber*) : bool
+setLinewidth(in lnum : const LcNumber*) : bool
+setSingleTransform(in sobj : const LcTransform*) : bool
+setNoDisplayList(in dobj : const LcNumber*) : bool
+subcomponentsFirst(in scfobj : const LcNumber*) : bool
+selectName(in snobj : const LcNumber*) : bool
+setVertices(in vertobj : const LcPairStream*) : bool
+flashOn() : bool
+flashOff() : bool
+isFlashing() : bool
+flashRate() : LCreal
+flashRate(in r : const LCreal) : LCreal
+isPostDrawComponents() : bool
+getSelectName() : GLuint
+setSelectName(in v : const GLuint)
+findBySelectName(in name : const GLuint) : LcPair *
+cursor(in ln : int*, in cp : int*) : bool
+flashTimer() : LCreal
+flashTimer(in dt : const LCreal) : LCreal
+getStdLineWidth() : GLfloat
#setTransformList(in list : LcPairStream*) : bool
-setupMatrix()

#dlist : GLuint
#selName : GLuint
#noDisplayList : bool
#linewidth : GLfloat
#postDraw : bool
-visible : bool
-haveMatrix : bool
-fRate : LCreal
-fTimer : LCreal = 0.0f

basicGL::LcGraphic

basic::LcTransform
-transforms 1

0..*

Transformation list

LcPairStream

basic::LcColor

basic::LcIdent

osg::Matrix

Matrix

1

-m

1

Transformation Matrix

1
-m1

1

Saved Matrix

1

-colorName

0..1
1

-color

0..1

osg::Vec3
1

-vertices

0..*

Vertices array

'nv' vertices in list

basic::LcComponentbasic::LcObject

BasicGL – LcGraphic
• Purpose: Base class for the graphic objects. Provides lists of

vertices and texture coordinates, transformation matrix, color,
texture id, line width, flash rate, visibility, …

• Derived from LcComponent
– Will manage a list of graphic subcomponents
– Standard graphic system parent/child relationship

• Parent attributes are passed down to child nodes
• Child nodes can override parent attributes

– updateTC() used to update object’s R/T dynamics
– updateData() used to send data to child components

• Member functions
– virtual void draw()

• Draw the graphic object, and all its child components, with the defined
attributes (e.g., color, line width, transformation matrix).

• Most cases, this function does not need to be over ridden by derived classes
– virtual void drawfunc()

• Called by draw()
• Performs the actual drawing (OpenGL)
• Derived classes provide their own drawfunc()

BasicGL – LcGraphic (cont)

• Member functions (cont)
– setColor() /* Sets the color */
– setLinewidth() /* Sets the line width */
– setFlashRate() /* Sets the flash rate (Hz) */
– setVisibility() /* Sets visibility flag */

– lcRotate(), lcTranslate(), lcScale()
• Transformation member functions

– setSelectName()
• Sets OpenGL select name
• Used to select/pick objects

BasicGL – Graphic classes

• Shapes
– Attributes and vertices are derived from the LcGraphic class
– LcPoint
– LcLine

• New attribute: segment
– Draw line segments if true, otherwise draw one continuous line

– LcLineLoop
– LcPolygon
– LcCircle

• New attributes: radius, filled, slices

• LcField
– Abstract text field class (created only as a derived class)
– New Attributes

• Line number and character position
• Field width
• Justification (left, right, center, none)
• Highlight (brighter text)
• Underline (use underline font)
• Reverse video (use reverse video font)

BasicGL – Graphic classes (cont)

• Readouts
– Derived from LcField

– AsciiText
• Standard text readout

– Rotary and Rotary2
• Selects and draws one component from its list of components

– NumericReadout
• Numerical readout
• New attributes

– Format (e.g., "+0#.#“ is a 5 character field, floating point number w/sign and
leading zeros)

– Default value
– Characters to substitute for ‘+’ and ‘-’ (e.g., ‘E’ and ‘W’)
– Maximum value
– Character to fill field with of maximum value is exceeded

BasicGL – Graphic classes (cont)

• Readouts (cont)

– Classes derived from NumericReadout

• TimeReadout
– Displays time in various formats

» Input value of time is in seconds
– Example formats

» “HH:MM:SS.S” is a 10 character field to display hours, minutes
and seconds to one decimal place

» “HH:MM” is a 5 character field to display hours and minutes only

• LatitudeReadout and LongitudeReadout
– Input values are in degrees (positive north and east)
– Displayed in various common formats

• HexReadout and OctalReadout classes

BasicGL – LcFont

• LcFont
– Base class for various character fonts

• LcBitmapFont
– Simple bitmap font

• LcFtglFont
– OpenGL True Type fonts
– Uses the FTGL graphics library from GNU

• LcStrokeFont
– Uses SGI’s stroke font

BasicGL – LcPage
• LcPage

– Manages a collection of graphic objects as a group (i.e., page)
• Multifunction Display (MFD) formats

– ADI and HSI formats
– Moving map and situation display formats
– System status formats

• Control Display Unit (CDU) and Up Front Controller (UFC) formats
– Waypoint lists
– Radio pages

– Contains a list of subpages
• Partitioned pages
• Pop up page menus

– Derived from LcGraphic
• Has its own ability to draw

– LcPage’s derived classes manage the flow of data from the simulation
subsystem to the graphic components

BasicGL – LcDisplay

• LcDisplay
– Manage collections of pages (LcPage) as a display system

• MFD, CDU, HUD, HMD, …
• The selection of pages, master menus, pop-up page events, …

– Each LcDisplay contains it’s own fonts, color table, textures,
standard line width, etc.

– Derived from LcPage, which is derived from LcGraphic
• Can provide it’s own background page and menus
• Can provide it’s own graphic components

– Derived classes manage the flow of data from major simulation
systems to the pages

– Can contain a list of sub-displays

BasicGL – GlutDisplay

• GlutDisplay
– Manages a LcDisplay as a GLUT main

window or sub-window.

– Manages GLUT event call backs
• Reshape
• Keyboard Event
• Special Event
• Mouse Event
• Draw Event

Instrument Library

• The instrument library is a library that contains classes which when
used can replicate various analog instruments.

• All instruments are derived from the Instrument class, which itself is
derived from LcGraphic.

• These instrument-derived classes can be used alone, or as pieces
to create a complex instrument.

• The instrument library depends on BasicGL, which defines the core
graphic classes.

• All instruments are data driven, and are easily created and initialized
via a *.d input file

Instrument Library (cont)

Instrument

AnalogDial

DialArcSegment

DialPointer

InstrumentText

DialTickMarks

AnalogGauge

TapeGauge

GaugeSlider

ColorRotary ColorRotaryB

LcColor

LcGraphic

Instrument Library (cont)

• Instrument class
– Core class for all instruments
– Member functions

• setInstVal() – updates our instruments position, based upon either a
linear or non-linear scale

– Also called by passing the token UPDATE_INSTRUMENTS to our
instrument classes event function

• ColorRotary class
– Given an input value, selects a color from a list of colors and

associated breakpoint values

Instrument Library (cont)

• AnalogDial class
– Creates either a mobile or stationary circular background for an

analog instrument using:
• a) startAngle – angle to start drawing from
• b) SweepAngle – how far around the circle to draw
• c) DialRadius – how big of a circle to draw
• d) Mobile – tells us if this object will rotate with instrument position

Start
Angle

Sweep

Angle

Instrument Library (cont)

• DialTickMarks class
– create tick marks around a circular dial

• length – determines the tick mark length (inches)
• quantity – how many tick marks to use
• tickGraphic – use this if you want to specify something other than a

line representation for a tick mark (such as a polygon, or texture)

• DialArcSegment class
– creates a circular portion of a gauge, with a start and

sweepAngle
• This is basically an AnalogDial, only it is not drawn as a filled circle,

and is more flexible in it’s drawing (linewidth, etc..)

• DialPointer class
– the pointer that will rotate around the dial based on the data it is

given, and the scaling table it is using
• It default to a line, but it can draw and rotate complex graphics,

including textures

Instrument Library (cont)

• AnalogGauge class
– Creates either a vertical or horizontal gauge that will increase or

decrease given a specific value
– Slots

• leftBoundary – point, in inches, to start the left side of the gauge
drawing from

• rightBoundary – right side boundary of the gauge
• outlined – determines if we fill the gauge or just use an outline
• vertical – if true, we draw a vertical gauge, else we are horizontal
• Note: leftBoundary and rightBoundary assume the top boundary

and bottom boundary if you specify the verical flag a false.

RightBoundary
Vertical = false

• GaugeSlider class
– creates a “slider” that will translate up and down the gauge

based on the instrument value
• every component of a GaugeSlider will translate with the instrument

position, from a complex textured graphic to an input field to a
numeric readout.

• you can send the UPDATE_VALUE event to readouts while they
are sliding, and they will show the digital output of the gauge.

• InstrumentText class
– allow readouts and other graphics to recognize what a

colorRotary is. This way you can send the value to the
instrumentText, and it will ask it’s colorRotary what color it
should be, and it will tell all of it’s components to be that color

Instrument Library (cont)

Instrument Library (cont)

• TapeGauge class
– takes a graphic, or texture, and translates it up and down

depending on the instrument value. It also allows you to scissor
a portion of the tape out, so it resembles a true analog gauge.

– Slots
• tapeGraphic – the graphic you want to translate
• scissorX – the x position of where you want to start the scissor
• scissorWidth – how much of the graphic width you want to scissor
• scissorY – the y position of where you want to start the scissor
• scissorHeight – how much of the graphic height you want to scissor

	BasicGL Foundation Classes�& Instrument Library�Revised: Nov 14, 2006
	Software Layers &Packages
	BasicGL�Class Hierarchy
	LcGraphic Station Structure
	BasicGL – LcGraphic
	BasicGL – LcGraphic (cont)
	BasicGL – Graphic classes
	BasicGL – Graphic classes (cont)
	BasicGL – Graphic classes (cont)
	BasicGL – LcFont
	BasicGL – LcPage
	BasicGL – LcDisplay
	BasicGL – GlutDisplay
	Instrument Library
	Instrument Library (cont)
	Instrument Library (cont)
	Instrument Library (cont)
	Instrument Library (cont)
	Instrument Library (cont)
	Instrument Library (cont)
	Instrument Library (cont)

